3rd International Air Transport and Operations Symposium
18 – 20 June 2012
Delft, the Netherlands

Optimal Scheduling of Fuel-Minimal Approach Trajectories

Florian Fisch, Matthias Bittner, Prof. Florian Holzapfel
Institute of Flight System Dynamics, Technische Universität München, Garching, Germany
Outline

1. Introduction
2. Aircraft Simulation Model
3. Multi-Aircraft Optimization Problem
4. Results
5. Summary & Outlook
1. Introduction

2. Aircraft Simulation Model

3. Multi-Aircraft Optimization Problem

4. Results

5. Summary & Outlook
Introduction

Computation of fuel minimal and noise minimal approach trajectories:

So far:
⇒ Optimization of *stand-alone* approach trajectories
⇒ Limitations due to other aircraft in the vicinity of an airport are not taken into account
⇒ Optimization results can not be put into practice due to the limitations arising from the remaining air traffic and the daily airport business

Here:
⇒ *Simultaneous* optimization of the approach trajectories of *multiple* aircraft present in the vicinity of an airport
⇒ Landing sequence is not pre-determined and has to be found by the optimization procedure
⇒ More realistic results
Outline

1. Introduction

2. Aircraft Simulation Model

3. Multi-Aircraft Optimization Problem

4. Results

5. Summary & Outlook
Aircraft Simulation Model

Point-Mass Simulation Model:

Position Equations of Motion (\textit{NED}-Frame):

\[
\begin{pmatrix}
\dot{x}^E \\
\dot{y} \\
\dot{z}_O
\end{pmatrix}
= \begin{pmatrix}
V_K^G \cdot \cos \chi_K^G \cdot \cos \gamma_K^G \\
V_K^G \cdot \sin \chi_K^G \cdot \cos \gamma_K^G \\
-V_K^G \cdot \sin \gamma_K^G
\end{pmatrix}_O
\]

Translation Equations of Motion:
Aircraft Simulation Model

Total sum of external forces:

\[
\left(\sum F^G \right)_K = \left(F_A^G \right)_K + \left(F_P^G \right)_K + M_{KO} \cdot \left(F_G^G \right)_O
\]

Thrust modeling:

\[
T = \delta_T \cdot T_{\text{max}}
\]

\[
T_{\text{max}} = T_{\text{max,ISA}} \cdot \left(1 - C_{Tc5} \cdot \Delta T_{ISA,\text{eff}} \right)
\]

\[
T_{\text{max,ISA}} = C_{Tc1} \cdot \left(1 - \frac{h}{C_{Tc2}} + C_{Tc3} \cdot (h)^2 \right)
\]

\[
\Delta T_{ISA,\text{eff}} = \Delta T_{ISA} - C_{Tc4}
\]

Aerodynamic coefficients:

\[
C_D = C_{D0} + C_{D2} \cdot C_L^2
\]

\[
C_L = C_{L0} + C_{La} \cdot \alpha_{A,\text{CMD}}
\]
Aircraft Simulation Model

Aerodynamic Forces:

\[D = \bar{q} \cdot S \cdot C_D = \bar{q} \cdot S \cdot \left(C_{D0} + C_{D2} \cdot C_L^2 \right) \]

\[Q = \bar{q} \cdot S \cdot C_Q = \bar{q} \cdot S \cdot C_{Q\beta} \cdot \beta_A = 0 \]

\[L = \bar{q} \cdot S \cdot C_L = \bar{q} \cdot S \cdot \left(C_{L0} + C_{La} \cdot \alpha_A \right) \]

Dynamic pressure:

\[\bar{q} = 0.5 \cdot \rho \cdot V_A^2 \]

Force vector:

\[\left(\bar{F}^G \right)_A = \left(\bar{F}^G \right)_A + \left(\bar{F}^G \right)_A = \begin{pmatrix} -D \\ 0 \\ -L \end{pmatrix} + \begin{pmatrix} T \\ 0 \end{pmatrix} = \begin{pmatrix} T - D \\ 0 \\ -L \end{pmatrix} \]
Aircraft Simulation Model

Noise model:

Sound pressure level:

\[L_A(T, r) = a \cdot T + b \cdot \log(r) + c \cdot \log(r)^2 + d \]

Sound exposure level:

\[L_{AE} = 10 \log\left(\frac{1}{t_0} \int_{t_1}^{t_2} 10^{L_A(t)/10} \, dt \right) \]

Number ofAwakenings:

\[n_{AW} = \sum_i 0.0087 \cdot (L_{AE,i} - 30)^{1.79} p_i \]
Aircraft Simulation Model

Atmospheric model (DIN ISO 2533):

\[H_G = \frac{r_E \cdot h}{r_E + h} \]

\[\rho = \rho_S \left[1 + \frac{\gamma_T r}{T_S} \cdot H_G \right] \left(-\frac{g_S}{R \gamma_T} \cdot 1 \right) \]

\[p = p_S \left[1 + \frac{\gamma_T r}{T_S} \cdot H_G \right] \left(-\frac{g_S}{R \gamma_T} \right) \]

Fuel consumption:

\[\dot{m}_{\text{fuel, idle}} = C_{f3} \cdot \left(1 - \frac{h}{C_{f4}} \right) \]

\[\dot{m}_{\text{fuel, max}} = C_{f1} \cdot \left(1 + \frac{V_A}{C_{f2}} \right) \cdot T_{\text{max}} \]

\[\dot{m}_{\text{fuel}} = \dot{m}_{\text{fuel, idle}} + \delta_T \cdot (\dot{m}_{\text{fuel, max}} - \dot{m}_{\text{fuel, idle}}) \]
Outline

1. Introduction

2. Aircraft Simulation Model

3. Multi-Aircraft Optimization Problem

4. Results

5. Summary & Outlook
Multi-Aircraft Optimization Problem

Determine the optimal control histories
\[u_{i,\text{opt}}(t_i) \in P^m \]
and the corresponding optimal state trajectories
\[x_{i,\text{opt}}(t_i) \in P^n \]
that minimize the Bolza cost functional
\[J = \sum_{i=1}^{N} \left[e_i(x_i(t_f), t_{f,i}) + \int_{t_{0,i}}^{t_{f,i}} L_i(x_i(t), u_i(t), t_i) dt_i \right] \]
subject to

⇒ the state dynamics
\[\dot{x}_i(t_i) = f_i(x_i(t_i), u_i(t_i), t_i) \]
⇒ the initial boundary conditions
\[\psi_{0,i}(x_i(t_{0,i}), t_{0,i}) = 0 \quad \psi_{0,i} \in P^{q_i} \]
⇒ the final boundary conditions
\[\psi_{f,i}(x_i(t_{f,i}), t_{f,i}) = 0 \quad \psi_{f,i} \in P^{p_i} \]
⇒ the interior point conditions
\[r_i(x(t_i), t_i) = 0 \quad r_i \in P^{k_i} \]
⇒ the equality constraints
\[C_{eq,i}(x_i(t_i), u_i(t_i), t_i) = 0 \quad C_{eq,i} \in P^{r_i} \]
⇒ and the inequality constraints
\[C_{ineq,i}(x_i(t_i), u_i(t_i), t_i) \leq 0 \quad C_{ineq,i} \in P^{s_i} \]
\[i = 1, \ldots, N \]
Initial boundary conditions:

- Defined by the entry position into the considered air space

Final boundary conditions:

- Assure that the aircraft are finally located on the ILS glide path
- Final approach fix: located at the origin of the Local Fixed Frame N at an altitude of h_{FAF}
- ILS glide path: directed parallel to the x-axis of the Local Fixed Frame N, into the direction of the positive x-axis
Multi-Aircraft Optimization Problem

Final boundary conditions:

- **Northward position:** \(x(t_f) \geq x_{FAF} + \Delta x \)
- **Eastward position:** \(y(t_f) = y_{FAF} \)
- **Altitude:** \(h(t_f) = h_{FAF} + \tan(-\gamma_{K,ILS}) \cdot x(t_f) \)
- **Glide-path angle:** \(\gamma_K(t_f) = \gamma_{K,ILS} \)
- **Heading angle:** \(\chi_K(t_f) = \chi_{K,ILS} \)
- **Kinematic velocity:** \(V_K(t_f) = V_{K,ILS} \)
Multi-Aircraft Optimization Problem

Inequality path constraints:

⇒ Load factor: \(n_{Z, LB} = 0.85 \leq n_Z(t) \leq 1.15 = n_{Z, UB} \)

⇒ Kinematic velocity: \(V_{K, LB} = 200 \frac{km}{h} \leq V_K(t) \leq 1000 \frac{km}{h} = V_{K, UB} \)

⇒ Angle of attack: \(\alpha_{A, CMD, LB} = -5.73^\circ \leq \alpha_{A, CMD} \leq 20.05^\circ = \alpha_{A, CMD, UB} \)

⇒ Bank angle: \(\mu_{K, CMD, LB} = -45^\circ \leq \mu_{K, CMD} \leq 45^\circ = \mu_{K, CMD, UB} \)

⇒ Thrust lever: \(\delta_{T, CMD, LB} = 0.0 \leq \delta_{T, CMD} \leq 1.0 = \delta_{T, CMD, UB} \)

⇒ Eastward position: \(y_{LB}(t) \leq y(t) \leq y_{UB}(t) \)

⇒ Altitude: \(h_{LB}(t) \leq h(t) \leq h_{UB}(t) \)

⇒ Aircraft distance: \(d_{ij}(t) - d_{\text{min}} \geq 0 \)
Inequality path constraints:

⇒ Path constraints are formulated such that the aircraft have to follow the ILS glide path once the FAF has been passed.

⇒ Eastward position:

\[
y_{LB}(t) = 0.5 \cdot [1 - \tanh(a \cdot x(t))] \cdot y_{LB} - 100.0
\]
\[
y_{UB}(t) = 0.5 \cdot [1 - \tanh(a \cdot x(t))] \cdot y_{UB} + 100.0
\]

⇒ Altitude:

\[
h_{LB}(t) = 0.5 \cdot [1 - \tanh(a \cdot x(t))] \cdot h_{LB} + (h_{FAF} - 100.0) + \tan(-\gamma_{ILS}) \cdot x(t)
\]
\[
h_{UB}(t) = 0.5 \cdot [1 - \tanh(a \cdot x(t))] \cdot h_{UB} + (h_{FAF} + 100.0) + \tan(-\gamma_{ILS}) \cdot x(t)
\]

⇒ Kinematic velocity:

\[
V_{K, LB}(t) = 0.5 \cdot [1 - \tanh(a \cdot x(t))] \cdot (V_{K, LB} - V_{K, ILS} + 10.0) + (V_{K, ILS} - 10.0)
\]
\[
V_{K, UB}(t) = 0.5 \cdot [1 - \tanh(a \cdot x(t))] \cdot (V_{K, UB} - V_{K, ILS} - 10.0) + (V_{K, ILS} + 10.0)
\]
Inequality path constraints:

\[\text{Path constraints are formulated such that the aircraft have to follow the ILS glide path once the FAF has been passed} \]
Multi-Aircraft Optimization Problem

Inequality path constraints:

⇒ A certain separation distance between the aircraft has to be maintained

Aircraft distances:

\[
d_{ij}(t) = \sqrt{[x_i(t) - x_j(t)]^2 + [y_i(t) - y_j(t)]^2 + [z_i(t) - z_j(t)]^2}, \quad i = 1, ..., N, j = i + 1, ..., N
\]

Normalization of flight times w.r.t. final flight times:

\[
\tau_i = \frac{t_i}{t_{f,i}}, i = 1, ..., N
\]

Introduction of one single parameter for all flight times:

\[
t_f = t_{f,1} = t_{f,2} = ... = t_{f,N}
\]

⇒ The time elapsed is the same for all aircraft

⇒ Constraints w.r.t. the minimum distances can be checked directly (because of the direct correlation of the time elapsed)
Multi-Aircraft Optimization Problem

Cost function:

Fuel-minimal approaches: maximize aircraft masses at the final times

\[J = -\sum_{i=1}^{N} m_i(t_{f,i}) \]

Noise-minimal approaches: minimize maximum sound pressure level or number of awakenings

Integral cost functions:
- The same flight time for all aircraft is enforced
- Aircraft are located on different positions on the ILS glide path (i.e. they have covered different distances)
 - **Equal weighting** of the aircraft has to be achieved

Portion of the integral cost function originating from flight along ILS glide path is not incorporated into the integral cost function:

\[\dot{m}_{\text{fuel,eff}}(t) = \dot{m}_{\text{fuel}}(t) \cdot 0.5 \cdot \left[1 - \tanh(a \cdot [x(t) - \Delta x_{\text{fuel}}]) \right] \]
Multi-Aircraft Optimization Problem

Full-Discretization Method – Forward (explicit) Euler:

⇒ Time discretization (e.g. equidistant):

\[\tau_i = t_0 + (i - 1) \cdot h, \quad i = 1, \ldots, N, \quad h = \frac{t_f - t_0}{N - 1} \]

⇒ Discretization of controls and states at time discretization points:

\[x_i, u_i, \quad i = 1, \ldots, N \]

⇒ Approximation of differential equations:

\[x_{i+1} = x_i + h \cdot f(x_i, u_i, p), \quad i = 1, \ldots, N - 1 \]

⇒ Additional equality constraints:

\[x_{i+1} - x_i - h \cdot f(x_i, u_i, p) = 0, \quad i = 1, \ldots, N - 1 \]
Multi-Aircraft Optimization Problem

Discretized Optimal Control Problem (Euler):

Determine the optimal parameter vector \(z = [x, u]^T \)

that minimizes the cost function \(J(z) \)

subject to

\(\Rightarrow \) the inequality constraints

\(C_{ineq}(x(z), z) \leq 0 \)

\(\Rightarrow \) and the equality constraints

\(C = \begin{pmatrix}
\psi_0(x(z), z) \\
C_{eq}(x(z), z) \\
x_{i+1} - x_i - h \cdot f(x_i, u_i) \\
r(x(z), z) \\
\psi_f(x(z), z)
\end{pmatrix} = 0 \)

\(\Rightarrow \) SNOPT (sequential quadratic programming SQP)
Multi-Aircraft Optimization Problem

Solution Strategy:

(1) Optimization without distance path constraints

(2) Simultaneous optimization with distance path constraints, using previous results as initial guess

⇒ Distance path constraints fulfilled by initial guess: Initial guess = Optimal solution of constrained problem

⇒ Distance path constraints not fulfilled by initial guess: Separation of aircraft until path constraints are met

Assumptions:

⇒ Optimal solution of unconstrained problem = Excellent initial guess of constrained problem

⇒ Cost function of a specific optimization problem is always less than or equal to the cost function of the same trajectory optimization problem with additional constraints
Outline

1. Introduction
2. Aircraft Simulation Model
3. Multi-Aircraft Optimization Problem
4. Results
5. Summary & Outlook
Results

Generic scenario:

⇒ The optimal landing sequence and the optimal approach trajectories for four aircraft are sought

⇒ Initial conditions:

<table>
<thead>
<tr>
<th>AC No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{i,0}$</td>
<td>−100000 m</td>
<td>−80000 m</td>
<td>−40000 m</td>
<td>−100000 m</td>
</tr>
<tr>
<td>$y_{i,0}$</td>
<td>100000 m</td>
<td>50000 m</td>
<td>−120000 m</td>
<td>−70000 m</td>
</tr>
<tr>
<td>$h_{i,0}$</td>
<td>4000 m</td>
<td>4000 m</td>
<td>5000 m</td>
<td>6000 m</td>
</tr>
<tr>
<td>$\chi_{K,i,0}$</td>
<td>−60.0°</td>
<td>−45.0°</td>
<td>95.0°</td>
<td>45.0°</td>
</tr>
<tr>
<td>$\gamma_{K,i,0}$</td>
<td>0.0°</td>
<td>0.0°</td>
<td>0.0°</td>
<td>0.0°</td>
</tr>
<tr>
<td>$V_{K,i,0}$</td>
<td>450.0 km/h</td>
<td>360.0 km/h</td>
<td>540.0 km/h</td>
<td>600.0 km/h</td>
</tr>
</tbody>
</table>
Results

Optimized approach trajectories

Optimized aircraft velocities V_K
Results

Optimized time histories of aircraft controls

Distances between aircraft

Optimal Scheduling of Fuel-Minimal Approach Trajectories
Outline

1. Introduction
2. Aircraft Simulation Model
3. Multi-Aircraft Optimization Problem
4. Results
5. Summary & Outlook
Summary

⇒ The approach trajectories of multiple aircraft in the vicinity of an airport have been optimized **simultaneously**

⇒ Path constraints have been introduced so that the aircraft are finally located on the ILS glide path and keep a certain separation distance

⇒ The optimal landing sequence is determined by the optimization procedure

Outlook

⇒ Utilization of splines to describe the centerlines of the allowed flight path corridors for the involved aircraft

⇒ Introduction of path constraints w.r.t. the maximum lateral and horizontal deviation from the centerlines

⇒ More sophisticated distance path constraints between aircraft
Thank you very much for your attention!